$\mathscr{T}_{\text {est }} \mathscr{K}_{\text {eview }} \mathscr{P}_{\text {roblems }}$

1) Find the determinant of $\left[\begin{array}{lll}2 & 1 & 3 \\ 0 & 4 & 0 \\ 0 & 2 & 1\end{array}\right]$.
2) Find $\left|\begin{array}{ccc}-5 & 3 & 1 \\ 6 & 2 & 2 \\ 4 & 4 & 0\end{array}\right|$.
3) Find the determinant of $\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \\ 5 & 1 & 0 & 0 \\ 6 & 1 & 0 & 0\end{array}\right]$
4) Find the determinant of $A-x I_{4}$ where $A=\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 0 & 3 & 4 \\ 5 & 1 & 0 & 0 \\ 6 & 1 & 0 & 0\end{array}\right]$.
5) Explain why $|A|=\left|A^{t}\right|$
6) $|A|=6 . B$ is obtained from A by: (a) interchanging two rows, (b), multiplying the $4^{\text {th }}$ row by 7 , (c) interchanging another two rows, and (d) adding 5 copies of the $3^{\text {rd }}$ row to the $5^{\text {th }}$ row. Find $|B|$.
7) For a 3×3 matrix, show that $|c A|=c^{3}|A|$ where c is a scalar.
8) Find the eigenvalues and eigenvectors of $\left[\begin{array}{cc}-1 & 2 \\ 0 & 3\end{array}\right]$.
9) Find the characteristic polynomial of $\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 3 & 0 \\ -1 & 1 & 2\end{array}\right]$
10) Find the eigenspaces of $\left[\begin{array}{ccc}3 & -1 & 0 \\ -1 & 3 & 0 \\ -1 & 1 & 2\end{array}\right]$
11) Find the eigenvectors of $\left[\begin{array}{cccc}5 & 5 & 1 & 8 \\ 8 & 2 & 1 & 8 \\ -6 & 6 & -9 & 0 \\ -7 & -1 & -2 & -10\end{array}\right]$. (Hint: $-3,-6$, and -9 are eigenvalues)
12) Let $\beta_{1}=\left\{\left[\begin{array}{c}1 \\ -2 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right]\right\}$. What is $\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right]_{\beta_{1}}$ expressed in the standard basis?
13) What is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ expressed in the basis β_{1} ?
14) Is it possible to express $\left[\begin{array}{l}-1 \\ -1 \\ -1\end{array}\right]_{S}$ in terms of β_{1} ? If so, find it.
15) Let $\beta_{2}=\left\{\left[\begin{array}{c}-1 \\ -3 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 4 \\ -2\end{array}\right],\left[\begin{array}{l}-2 \\ -3 \\ -2\end{array}\right]\right\}$. Find $\left[I_{3}\right]_{\beta_{1}}^{\beta_{2}}$, the change of basis matrix from β_{1} to β_{2}.
16) Find $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]_{\beta_{1}}$ in terms of β_{2}.
17) Find $\left[\begin{array}{c}0 \\ 0 \\ -3\end{array}\right]_{\beta_{2}}$ in terms of β_{1}.
18) Find $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ in terms of both β_{1} and β_{2}. Graph all three of these on the same plane.
19) Diagonalize $\left[\begin{array}{cc}-2 & 2 \\ 0 & 0\end{array}\right]$.
20) Diagonalize $A=\left[\begin{array}{ccc}4 & -1 & -2 \\ -6 & 3 & 4 \\ 8 & -2 & -4\end{array}\right]$.
21) Find A^{2}
22) Find A^{20}
23) Find A^{200}
24) Diagonalize $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ -1 & 0 & 1 & 7\end{array}\right]$
25) A diagonalizable 7×7 matrix A has eigenvalues $2,3,4$ with 3 having multiplicity 5 . Show that $A-3 I_{7}$ has exactly 2 linearly independent rows.
